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Abstract
This paper presents the design of the storage system for the POSTGRES data base system

under construction at Berkeley. It is novel in several ways. First, the storage manager supports
transaction management but does so without using a conventional write ahead log (WAL). In
fact, there is no code to run at recovery time, and consequently recovery from crashes is essen-
tially instantaneous. Second, the storage manager allows a user to optionally keep the entire past
history of data base objects by closely integrating an archival storage system to which historical
records are spooled. Lastly, the storage manager is consciously constructed as a collection of
asynchronous processes. Hence, a large monolithic body of code is avoided and opportunities for
parallelism can be exploited. The paper concludes with a analysis of the storage system which
suggests that it is performance competitive with WAL systems in many situations.

1. INTRODUCTION
The POSTGRES storage manager is the collection of modules that provide transaction

management and access to data base objects. The design of these modules was guided by three
goals which are discussed in turn below. The first goal was to provide transaction management
without the necessity of writing a large amount of specialized crash recovery code. Such code is
hard to debug, hard to write and must be error free. If it fails on an important client of the data
manager, front page news is often the result because the client cannot access his data base and his
business will be adversely affected. To achieve this goal, POSTGRES has adopted a novel
storage system in which no data is ever overwritten; rather all updates are turned into insertions.

The second goal of the storage manager is to accomodate the historical state of the data base
on a write-once-read-many (WORM) optical disk (or other archival medium) in addition to the
current state on an ordinary magnetic disk. Consequently, we have designed an asynchronous
process, called the vacuum cleaner which moves archival records off magnetic disk and onto an
archival storage system.

The third goal of the storage system is to take advantage of specialized hardware. In partic-
ular, we assume the existence of non-volatile main memory in some reasonable quantity. Such
memory can be provide through error correction techniques and a battery-back-up scheme or
from some other hardware means. In addition, we expect to have a few low level machine
instructions available for specialized uses to be presently explained. We also assume that archi-
tectures with several processors will become increasingly popular. In such an environment, there
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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is an opportunity to apply multiple processors to running the DBMS where currently only one is
utilized. This requires the POSTGRES DBMS to be changed from the monolithic single-flow-
of-control architectures that are prevalent today to one where there are many asynchronous
processes concurrently performing DBMS functions. Processors with this flavor include the
Sequent Balance System [SEQU85], the FIREFLY, and SPUR [HILL85].

The remainder of this paper is organized as follows. In the next section we present the
design of our magnetic disk storage system. Then, in Section 3 we present the structure and con-
cepts behind our archival system. Section 4 continues with some thoughts on efficient indexes for
archival storage. Lastly, Section 5 presents a performance comparison between our system and
that of a conventional storage system with a write-ahead log (WAL) [GRAY78].

2. THE MAGNETIC DISK SYSTEM

2.1. The Transaction System
Disk records are changed by data base transactions, each of which is given a unique tran-

saction identifier (XID). XIDs are 40 bit unsigned integers that are sequentially assigned start-
ing at 1. At 100 transactions per second (TPS), POSTGRES has sufficient XIDs for about 320
years of operation. In addition, the remaining 8 bits of a composite 48 bit interaction identifier
(IID) is a command identifier (CID) for each command within a transaction. Consequently, a
transaction is limited to executing at most 256 commands.

In addition there is a transaction log which contains 2 bits per transaction indicating its
status as:

committed
aborted
in progress

A transaction is started by advancing a counter containing the first unassigned XID and using the
current contents as a XID. The coding of the log has a default value for a transaction as ‘‘in pro-
gress’’ so no specific change to the log need be made at the start of a transaction. A transaction is
committed by changing its status in the log from ‘‘in progress’’ to ‘‘committed’’ and placing the
appropriate disk block of the log in stable storage. Moreover, any data pages that were changed
on behalf of the transaction must also be placed in stable storage. These pages can either be
forced to disk or moved to stable main memory if any is available. Similarly, a transaction is
aborted by changing its status from ‘‘in progress’’ to ‘‘aborted’’.

The tail of the log is that portion of the log from the oldest active transaction up to the
present. The body of the log is the remainder of the log and transactions in this portion cannot be
‘‘in progress’’ so only 1 bit need be allocated. The body of the log occupies a POSTGRES rela-
tion for which a special access method has been built. This access method places the status of
65536 transactions on each POSTGRES 8K disk block. At 1 transaction per second, the body
increases in size at a rate of 4 Mbytes per year. Consequently, for light applications, the log for
the entire history of operation is not a large object and can fit in a sizeable buffer pool. Under
normal circumstances several megabytes of memory will be used for this purpose and the status
of all historical transactions can be readily found without requiring a disk read.

In heavier applications where the body of the log will not fit in main memory, POSTGRES
applies an optional compression technique. Since most transactions commit, the body of the log
contains almost all ‘‘commit’’ bits. Hence, POSTGRES has an optional bloom filter [SEVR76]
for the aborted transactions. This tactic compresses the buffer space needed for the log by about
a factor of 10. Hence, the bloom filter for heavy applications should be accomodatable in main
memory. Again the run-time system need not read a disk block to ascertain the status of any tran-
saction. The details of the bloom filter design are presented in [STON86].
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The tail of the log is a small data structure. If the oldest transaction started one day ago,
then there are about 86,400 transactions in the tail for each 1 transaction per second processed.
At 2 bits per entry, the tail requires 21,600 bytes per transaction per second. Hence, it is reason-
able to put the tail of the log in stable main memory since this will save the pages containing the
tail of the log from being forced to disk many times in quick succession as transactions with simi-
lar transaction identifiers commit.

2.2. Relation Storage
When a relation is created, a file is allocated to hold the records of that relation. Such

records have no prescribed maximum length, so the storage manager is prepared to process
records which cross disk block boundaries. It does so by allocating continuation records and
chaining them together with a linked list. Moreover, the order of writing of the disk blocks of
extra long records must be carefully controlled. The details of this support for multiblock records
are straightforward, and we do not discuss them further in this paper. Initially, POSTGRES is
using conventional files provided by the UNIX operating system; however, we may reassess this
decision when the entire system is operational. If space in a file is exhausted, POSTGRES
extends the file by some multiple of the 8K page size.

If a user wishes the records in a relation to be approximately clustered on the value of a
designated field, he must declare his intention by indicating the appropriate field in the following
command

cluster rel-name on {(field-name using operator)}

POSTGRES will attempt to keep the records approximately in sort order on the field name(s)
indicated using the specified operator(s) to define the linear ordering. This will allow clustering
secondary indexes to be created as in [ASTR76].

Each disk record has a bit mask indicating which fields are non-null, and only these fields
are actually stored. In addition, because the magnetic disk storage system is fundamentally a ver-
sioning system, each record contains an additional 8 fields:

OID a system-assigned unique record identifier
Xmin the transaction identifier of the interaction inserting the record
Tmin the commit time of Xmin (the time at which the record became valid)
Cmin the command identifier of the interaction inserting the record
Xmax the transaction identifier of the interaction deleting the record
Tmax the commit time of Xmax (the time at which the record stopped being valid)
Cmax the command identifier of the interaction deleting the record
PTR a forward pointer

When a record is inserted it is assigned a unique OID, and Xmin and Cmin are set to the identity
of the current interaction. the remaining five fields are left blank. When a record is updated, two
operations take place. First, Xmax and Cmax are set to the identity of the current interaction in
the record being replaced to indicate that it is no longer valid. Second, a new record is inserted
into the data base with the proposed replacement values for the data fields. Moreover, OID is set
to the OID of the record being replaced, and Xmin and Cmin are set to the identity of the current
interaction. When a record is deleted, Xmax and Cmax are set to the identity of the current
interaction in the record to be deleted.

When a record is updated, the new version usually differs from the old version in only a few
fields. In order to avoid the space cost of a complete new record, the following compression tech-
nique has been adopted. The initial record is stored uncompressed and called the anchor point.
Then, the updated record is differenced against the anchor point and only the actual changes are
stored. Moreover, PTR is altered on the anchor point to point to the updated record, which is
called a delta record. Successive updates generate a one-way linked list of delta records off an

3



www.manaraa.com

initial anchor point. Hopefully most delta record are on the same operating system page as the
anchor point since they will typically be small objects.

It is the expectation that POSTGRES would be used as a local data manager in a distributed
data base system. Such a distributed system would be expected to maintain multiple copies of all
important POSTGRES objects. Recovery from hard crashes, i.e. one for which the disk cannot be
read, would occur by switching to some other copy of the object. In a non-distributed system
POSTGRES will allow a user to specify that he wishes a second copy of specific objects with the
command:

mirror rel-name

Some operating systems (e.g. VMS [DEC86] and Tandem [BART81]) already support mirrored
files, so special DBMS code will not be necessary in these environments. Hopefully, mirrored
files will become a standard operating systems service in most environments in the future.

2.3. Time Management
The POSTGRES query language, POSTQUEL allows a user to request the salary of Mike

using the following syntax.

retrieve (EMP.salary) where EMP.name = ‘‘Mike’’

To support access to historical tuples, the query language is extended as follows:

retrieve (EMP.salary) using EMP[T] where EMP.name = ‘‘Mike’’

The scope of this command is the EMP relation as of a specific time, T, and Mike’s salary will be
found as of that time. A variety of formats for T will be allowed, and a conversion routine will be
called to convert times to the 32 bit unsigned integers used internally. POSTGRES constructs a
query plan to find qualifying records in the normal fashion. However, each accessed tuple must
be additionally checked for validity at the time desired in the user’s query. In general, a record is
valid at time T if the following is true:

Tmin < T and Xmin is a committed transaction and either:
Xmax is not a committed transaction or
Xmax is null or
Tmax > T

In fact, to allow a user to read uncommitted records that were written by a different command
within his transaction, the actual test for validity is the following more complex condition.

Xmin = my-transaction and Cmin != my-command and T = ‘‘now’’
or

Tmin < T and Xmin is a committed transaction and either:
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null or
Tmax > T or

If T is not specified, then T = ‘‘now’’ is the default value, and a record is valid at time, ‘‘now’’ if

Xmin = my-transaction and Cmin != my-command
or

Xmin is a committed transaction and either
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null

4



www.manaraa.com

More generally, Mike’s salary history over a range of times can be retrieved by:

retrieve (EMP.Tmin, EMP.Tmax, EMP.salary)
using EMP[T1,T2] where EMP.name = ‘‘Mike’’

This command will find all salaries for Mike along with their starting and ending times as long as
the salary is valid at some point in the interval, [T1, T2]. In general, a record is valid in the
interval [T1,T2] if:

Xmin = my-transaction and Cmin != my-command and T2 >= ‘‘now’’
or

Tmin < T2 and Xmin is a committed transaction and either:
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null or
Tmax > T1

Either T1 or T2 can be omitted and the defaults are respectively T1 = 0 and T2 = +infinity

Special programs (such as debuggers) may want to be able to access uncommitted records.
To facilitate such access, we define a second specification for each relation, for example:

retrieve (EMP.salary) using all-EMP[T] where EMP.name = ‘‘Mike’’

An EMP record is in all-EMP at time T if

Tmin < T and (Tmax > T or Tmax = null)

Intuitively, all-EMP[T] is the set of all tuples committed, aborted or in-progress at time T.

Each accessed magnetic disk record must have one of the above tests performed. Although
each test is potentially CPU and I/O intensive, we are not overly concerned with CPU resources
because we do not expect the CPU to be a significant bottleneck in next generation systems. This
point is discussed further in Section 5. Moreover, the CPU portion of these tests can be easily
committed to custom logic or microcode or even a co-processor if it becomes a bottleneck.

There will be little or no I/O associated with accessing the status of any transaction, since
we expect the transaction log (or its associated bloom filter) to be in main memory. We turn in
the next subsection to avoiding I/O when evaluating the remainder of the above predicates.

2.4. Concurrency Control and Timestamp Management
It would be natural to assign a timestamp to a transaction at the time it is started and then

fill in the timestamp field of each record as it is updated by the transaction. Unfortunately, this
would require POSTGRES to process transactions logically in timestamp order to avoid anomo-
lous behavior. This is equivalent to requiring POSTGRES to use a concurrency control scheme
based on timestamp ordering (e.g. [BERN80]. Since simulation results have shown the superior-
ity of conventional locking [AGRA85], POSTGRES uses instead a standard two-phase locking
policy which is implemented by a conventional main memory lock table.

Therefore, Tmin and Tmax must be set to the commit time of each transaction (which is the
time at which updates logically take place) in order to avoid anomolous behavior. Since the com-
mit time of a transaction is not known in advance, Tmin and Tmax cannot be assigned values at
the time that a record is written.

We use the following technique to fill in these fields asynchronously. POSTGRES contains
a TIME relation in which the commit time of each transaction is stored. Since timestamps are 32
bit unsigned integers, byte positions 4*j through 4*j + 3 are reserved for the commit time of tran-
saction j. At the time a transaction commits, it reads the current clock time and stores it in the
appropriate slot of TIME. The tail of the TIME relation can be stored in stable main memory to
avoid the I/O that this update would otherwise entail.
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Moreover, each relation in a POSTGRES data base is tagged at the time it is created with
one of the following three designations:

no archive: This indicates that no historical access to relations is required.

light archive: This indicates that an archive is desired but little access to it
is expected.

heavy archive: This indicates that heavy use will be made of the archive.

For relations with ‘‘no archive’’ status, Tmin and Tmax are never filled in, since access to histori-
cal tuples is never required. For such relations, only POSTQUEL commands specified for T =
‘‘now’’ can be processed. The validity check for T = ‘‘now’’ requires access only to the
POSTGRES LOG relation which should be contained in the buffer pool. Hence, the test con-
sumes no I/O resources.

If ‘‘light archive’’ is specified, then access to historical tuples is allowed. Whenever Tmin
or Tmax must be compared to some specific value, the commit time of the appropriate transaction
is retrieved from the TIME relation to make the comparison. Access to historical records will be
slowed in the ‘‘light archive’’ situation by this requirement to perform an I/O to the TIME rela-
tion for each timestamp value required. This overhead will only be tolerable if archival records
are accessed a very small number of times in their lifetime (about 2-3).

In the ‘‘heavy archive’’ condition, the run time system must look up the commit time of a
transaction as in the ‘‘light archive’’ case. However, it then writes the value found into Tmin or
Tmax, thereby turning the read of a historical record into a write. Any subsequent accesses to the
record will then be validatable without the extra access to the TIME relation. Hence, the first
access to an archive record will be costly in the ‘‘heavy archive’’ case, but subsequent ones will
will incur no extra overhead.

In addition, we expect to explore the utility of running another system demon in back-
ground to asynchronously fill in timestamps for ‘‘heavy archive’’ relations.

2.5. Record Access
Records can be accessed by a sequential scan of a relation. In this case, pages of the

appropriate file are read in a POSTGRES determined order. Each page contains a pointer to the
next and the previous logical page; hence POSTGRES can scan a relation by following the for-
ward linked list. The reverse pointers are required because POSTGRES can execute query plans
either forward or backward. Additionally, on each page there is a line table as in [STON76] con-
taining pointers to the starting byte of each anchor point record on that page.

Once an anchor point is located, the delta records linked to it can be constructed by follow-
ing PTR and decompressing the data fields. Although decompression is a CPU intensive task, we
feel that CPU resources will not be a bottleneck in future computers as noted earlier. Also,
compression and decompression of records is a task easily committed to microcode or a separate
co-processor.

An arbitrary number of secondary indexes can be constructed for any base relation. Each
index is maintained by an access method. and provides keyed access on a field or a collection of
fields. Each access method must provide all the procedures for the POSTGRES defined abstrac-
tion for access methods. These include get-record-by-key, insert-record, delete-record, etc. The
POSTGRES run time system will call the various routines of the appropriate access method when
needed during query processing.
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Each access method supports efficient access for a collection of operators as noted in
[STON86a]. For example, B-trees can provide fast access for any of the operators:

{=, <=, <, >, >=}

Since each access method may be required to work for various data types, the collection of opera-
tors that an access methods will use for a specific data type must be registered as an operator
class. Consequently, the syntax for index creation is:

index on rel-name is index-name ({key-i with operator-class-i})
using access-method-name and performance-parameters

The performance-parameters specify the fill-factor to be used when loading the pages of the
index, and the minimum and maximum number of pages to allocate. The following example
specifies a B-tree index on a combined key consisting of an integer and a floating point number.

index on EMP is EMP-INDEX (age with integer-ops, salary with float-ops)
using B-tree and fill-factor = .8

The run-time system handles secondary indexes in a somewhat unusual way. When a
record is inserted, an anchor point is constructed for the record along with index entries for each
secondary index. Each index record contains a key(s) plus a pointer to an entry in the line table
on the page where the indexed record resides. This line table entry in turn points to the byte-offset
of the actual record. This single level of indirection allows anchor points to be moved on a data
page without requiring maintenance of secondary indexes.

When an existing record is updated, a delta record is constructed and chained onto the
appropriate anchor record. If no indexed field has been modified, then no maintenance of secon-
dary indexes is required. If an indexed field changed, then an entry is added to the appropriate
index containing the new key(s) and a pointer to the anchor record. There are no pointers in
secondary indexes directly to delta records. Consequently, a delta record can only be accessed by
obtaining its corresponding anchor point and chaining forward.

The POSTGRES query optimizer constructs plans which may specify scanning portions of
various secondary indexes. The run time code to support this function is relatively conventional
except for the fact that each secondary index entry points to an anchor point and a chain of delta
records, all of which must be inspected. Valid records that actually match the key in the index
are then returned to higher level software.

Use of this technique guarantees that record updates only generate I/O activity in those
secondary indexes whose keys change. Since updates to keyed fields are relatively uncommon,
this ensures that few insertions must be performed in the secondary indexes.

Some secondary indexes which are hierarchical in nature require disk pages to be placed in
stable storage in a particular order (e.g. from leaf to root for page splits in B+-trees). POSTGRES
will provide a low level command

order block-1 block-2

to support such required orderings. This command is in addition to the required pin and unpin
commands to the buffer manager.

3. THE ARCHIVAL SYSTEM

3.1. Vacuuming the Disk
An asynchronous demon is responsible for sweeping records which are no longer valid to

the archive. This demon, called the vacuum cleaner, is given instructions using the following
command:
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vacuum rel-name after T

Here T is a time relative to ‘‘now’’. For example, the following vacuum command specifies
vacuuming records over 30 days old:

vacuum EMP after ‘‘30 days’’

The vacuum cleaner finds candidate records for archiving which satisfy one of the following con-
ditions:

Xmax is non empty and is a committed transaction and ‘‘now’’ - Tmax >= T
Xmax is non empty and is an aborted transaction
Xmin is non empty and is an aborted transaction

In the second and third cases, the vacuum cleaner simply reclaims the space occupied by such
records. In the first case, a record must be copied to the archive unless ‘‘no-archive’’ status is set
for this relation. Additionally, if ‘‘heavy-archive’’ is specified, Tmin and Tmax must be filled in
by the vacuum cleaner during archiving if they have not already been given values during a previ-
ous access. Moreover, if an anchor point and several delta records can be swept together, the
vacuuming process will be more efficient. Hence, the vacuum cleaner will generally sweep a
chain of several records to the archive at one time.

This sweeping must be done very carefully so that no data is irrecoverably lost. First we dis-
cuss the format of the archival medium, then we turn to the sweeping algorithm and a discussion
of its cost.

3.2. The Archival Medium
The archival storage system is compatible with WORM devices, but is not restricted to such

systems. We are building a conventional extent-based file system on the archive, and each rela-
tion is allocated to a single file. Space is allocated in large extents and the next one is allocated
when the current one is exhausted. The space allocation map for the archive is kept in a magnetic
disk relation. Hence, it is possible, albeit very costly, to sequentially scan the historical version of
a relation.

Moreover, there are an arbitrary number of secondary indexes for each relation in the
archive. Since historical accessing patterns may be different than accessing patterns for current
data, we do not restrict the archive indexes to be the same as those for the magnetic disk data
base. Hence, archive indexes must be explicitly created using the following extension of the
indexing command:

index on {archive} rel-name is index-name ({key-i with operator-class-i})
using access-method-name and performance-parameters

Indexes for archive relations are normally stored on magnetic disk. However, since they may
become very large, we will discuss mechanisms in the next section to support archive indexes
that are partly on the archive medium.

The anchor point and a collection of delta records are concatenated and written to the
archive as a single variable length record. Again secondary index records must be inserted for
any indexes defined for the archive relation. An index record is generated for the anchor point for
each archive secondary index. Moreover, an index record must be constructed for each delta
record in which a secondary key has been changed.

Since the access paths to the portion of a relation on the archive may be different than the
access paths to the portion on magnetic disk, the query optimizer must generate two plans for any
query that requests historical data. Of course, these plans can be executed in parallel if multiple
processors are available. In addition, we are studying the decomposition of each of these two
query plans into additional parallel pieces. A report on this subject is in preparation [BHID87].
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3.3. The Vacuum Process
Vacuuming is done in three phases, namely:

phase 1: write an archive record and its associated index records
phase 2: write a new anchor point in the current data base
phase 3: reclaim the space occupied by the old anchor point and its delta

records

If a crash occurs while the vacuum cleaner is writing the historical record in phase 1, then the
data still exists in the magnetic disk data base and will be revacuumed again at some later time.
If the historical record has been written but not the associated indexes, then the archive will have
a record which is reachable only through a sequential scan. If a crash occurs after some index
records have been written, then it will be possible for the same record to be accessed in a mag-
netic disk relation and in an archive relation. In either case, the duplicate record will consume
system resources; however, there are no other adverse consequences because POSTGRES is a
relational system and removes duplicate records during processing.

When the record is safely stored on the archive and indexed appropriately, the second phase
of vacuuming can occur. This phase entails computing a new anchor point for the magnetic disk
relation and adding new index records for it. This anchor point is found by starting at the old
anchor point and calculating the value of the last delta that satisfies

‘‘now’’ - Tmax >= T

by moving forward through the linked list. The appropriate values are inserted into the magnetic
disk relation, and index records are inserted into all appropriate index. When this phase is com-
plete, the new anchor point record is accessible directly from secondary indexes as well as by
chaining forward from the old anchor point. Again, if there is a crash during this phase a record
may be accessible twice in some future queries, resulting in additional overhead but no other
consequences.

The last phase of the vacuum process is to remove the original anchor point followed by all
delta records and then to delete all index records that pointed to this deleted anchor point. If there
is a crash during this phase, index records may exist that do not point to a correct data record.
Since the run-time system must already check that data records are valid and have the key that the
appropriate index record expects them to have, this situation can be checked using the same
mechanism.

Whenever there is a failure, the vacuum cleaner is simply restarted after the failure is
repaired. It will re-vacuum any record that was in progress at some later time. If the crash
occurred during phase 3, the vacuum cleaner could be smart enough to realize that the record was
already safely vacuumed. However, the cost of this checking is probably not worthwhile. Conse-
quently, failures will result in a slow accumulation of extra records in the archive. We are
depending on crashes to be infrequent enough that this is not a serious concern.

We now turn to the cost of the vacuum cleaner.

3.4. Vacuuming Cost
We examine two different vacuuming situations. In the first case we assume that a record is

inserted, updated K times and then deleted. The whole chain of records from insertion to deletion
is vacuumed at once. In the second case, we assume that the vacuum is run after K updates, and a
new anchor record must be inserted. In both cases, we assume that there are Z secondary indexes
for both the archive and magnetic disk relation, that no key changes are made during these K
updates, and that an anchor point and all its delta records reside on the same page. Table 1 indi-
cates the vacuum cost for each case. Notice that vacuuming consumes a constant cost. This
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whole chain K updates

archive-writes 1+Z 1+Z
disk-reads 1 1
disk-writes 1+Z 1+Z

I/O Counts for Vacuuming
Table 1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

rather surprising conclusion reflects the fact that a new anchor record can be inserted on the same
page from which the old anchor point is being deleted without requiring the page to be forced to
stable memory in between the operations. Moreover, the new index records can be inserted on
the same page from which the previous entries are deleted without an intervening I/O. Hence, the
cost PER RECORD of the vacuum cleaner decreases as the length of the chain, K, increases. As
long as an anchor point and several delta records are vacuumed together, the cost should be mar-
ginal.

4. INDEXING THE ARCHIVE

4.1. Magnetic Disk Indexes
The archive can be indexed by conventional magnetic disk indexes. For example, one

could construct a salary index on the archive which would be helpful in answering queries of the
form:

retrieve (EMP.name) using EMP [,] where EMP.salary = 10000

However, to provide fast access for queries which restrict the historical scope of interest, e.g:

retrieve (EMP.name) using EMP [1/1/87,] where EMP.salary = 10000

a standard salary index will not be of much use because the index will return all historical salaries
of the correct size whereas the query only requested a small subset. Consequently, in addition to
conventional indexes, we expect time-oriented indexes to be especially useful for archive rela-
tions. Hence, the two fields, Tmin and Tmax, are stored in the archive as a single field, I, of type
interval. An R-tree access method [GUTM84] can be constructed to provide an index on this
interval field. The operators for which an R-tree can provide fast access include "overlaps" and
"contained-in". Hence, if these operators are written for the interval data type, an R-tree can be
constructed for the EMP relation as follows:

index on archive EMP is EMP-INDEX (I with interval-ops)
using R-tree and fill-factor = .8

This index can support fast access to the historical state of the EMP relation at any point in time
or during a particular period.

To utilize such indexes, the POSTGRES query planner needs to be slightly modified. Note
that POSTGRES need only run a query on an archive relation if the scope of the relation includes
some historical records, Hence, the query for an archive relation must be of the form:

...using EMP[T]
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or

...using EMP[T1,T2]

The planner converts the first construct into:

...where T contained-in EMP.I

and the second into:

...where interval(T1,T2) overlaps EMP.I

Since all records in the archive are guaranteed to be valid, these two qualifications can replace all
the low level code that checks for record validity on the magnetic disk described in Section 2.3.
With this modification, the query optimizer can use the added qualification to provide a fast
access path through an interval index if one exists.

Moreover, we expect combined indexes on the interval field along with some data value to
be very attractive, e.g:

index on archive EMP is EMP-INDEX
(I with interval-ops, salary with float-ops)
using R-tree and fill-factor = .8

Since an R-tree is a multidimensional index, the above index supports intervals which exist in a
two dimensional space of time and salaries. A query such as:

retrieve (EMP.name) using EMP[T1,T2] where EMP.salary = 10000

will be turned into:

retrieve (EMP.name) where EMP.salary = 10000
and interval(T1,T2) overlaps EMP.I

The two clauses of the qualification define another interval in two dimensions and conventional
R-tree processing of the interval can be performed to use both qualifications to advantage.

Although data records will be added to the archive at the convenience of the vacuum
cleaner, records will be generally inserted in ascending time order. Hence, the poor performance
reported in [ROUS85] for R-trees should be averted by the nearly sorted order in which the
records will be inserted. Performance tests to ascertain this speculation are planned. We now
turn to a discussion of R-tree indexes that are partly on both magnetic and archival mediums.

4.2. Combined Media Indexes
We begin with a small space calculation to illustrate the need for indexes that use both

media. Suppose a relation exists with 10**6 tuples and each tuple is modified 30 times during the
lifetime of the application. Suppose there are two secondary indexes for both the archive and the
disk relation and updates never change the values of key fields. Moreover, suppose vacuuming
occurs after the 5th delta record is written, so there are an average of 3 delta records for each
anchor point. Assume that anchor points consume 200 bytes, delta records consume 40 bytes,
and index keys are 10 bytes long.

With these assumptions, the sizes in bytes of each kind of object are indicated in Table 2.
Clearly, 10**6 records will consume 200 mbytes while 3 x 10**6 delta records will require 120
mbytes. Each index record is assumed to require a four byte pointer in addition to the 10 byte
key; hence each of the two indexes will take up 14 mbytes. There are 6 anchor point records on
the archive for each of the 10**6 records each concatenated with 4 delta records. Hence, archive
records will be 360 bytes long, and require 2160 mbytes. Lastly, there is an index record for each
of the archive anchor points; hence the archive indexes are 6 times as large as the magnetic disk
indexes.
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object mbytes

disk relation anchor points 200
deltas 120
secondary indexes 28

archive 2160
archive indexes 168

Sizes of the Various Objects
Table 2

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Two points are evident from Table 2. First, the archive can become rather large. Hence,
one should vacuum infrequently to cut down on the number of anchor points that occur in the
archive. Moreover, it might be desirable to differentially code the anchor points to save space.
The second point to notice is that the archive indexes consume a large amount of space on mag-
netic disk. if the target relation had three indexes instead of two, the archive indexes would con-
sume a greater amount of space than the magnetic disk relation. Hence, we explore in this sec-
tion data structures that allow part of the index to migrate to the archive. Although we could
alternatively consider index structures that are entirely on the archive, such as those proposed in
[VITT85], we believe that combined media structures will substantially outperform structures
restricted to the archive. We plan performance comparisons to demonstrate the validity of this
hypothesis.

Consider an R-tree storage structure in which each pointer in a non-leaf node of the R-tree
is distinguished to be either a magnetic disk page pointer or an archive page pointer. If pointers
are 32 bits, then we can use the high-order bit for this purpose thereby allowing the remaining 31
bits to specify 2**31 pages on magnetic disk or archive storage. If pages are 8K bytes, then the
maximum size of an archive index is 2**44 bytes (about 1.75 x 10**13 bytes), clearly adequate
for almost any application. Moreover, the leaf level pages of the R-tree contain key values and
pointers to associated data records. These data pointers can be 48 bytes long, thereby allowing
the data file corresponding to a single historical relation to be 2**48 bytes long (about 3.0 x
10**14 bytes), again adequate for most applications.

We assume that the archive may be a write-once-read-many (WORM) device that allows
pages to be initially written but then does not allow any overwrites of the page. With this
assumption, records can only be dynamically added to pages
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that reside on magnetic disk. Table 3 suggests two sensible strategies for the placement of new
records when they are not entirely contained inside some R-tree index region corresponding to a
magnetic disk page.

Moreover, we assume that any page that resides on the archive contains pointers that in turn
point only to pages on the archive. This avoids having to contend with updating an archive page
which contains a pointer to a magnetic disk page that splits.

Pages in an R-tree can be moved from magnetic disk to the archive as long as they contain
only archive page pointers. Once a page moves to the archive, it becomes read only. A page can
be moved from the archive to the magnetic disk if its parent page resides on magnetic disk. In
this case, the archive page previously inhabited by this page becomes unusable. The utility of
this reverse migration seems limited, so we will not consider it further.

We turn now to several page movement policies for migrating pages from magnetic disk to
the archive and use the parameters indicated in Table 4 in the discussion to follow. The simplist
policy would be to construct a system demon to ‘‘vacuum’’ the index by moving the leaf page to
the archive that has the smallest value for Tmax, the left-hand end of its interval. This vacuum-
ing would occur whenever the R-tree structure reached a threshold near its maximum size of F
disk pages. A second policy would be to choose a worthy page to archive based both on its value
of Tmax and on percentage fullness of the page. In either case, insertions would be made into the
R-tree index at the lower left-hand part of the index while the demon would be archiving pages in
the lower right hand part of the index. Whenever an intermediate R-tree node had descendents all
on the archive, it could in turn be archived by the demon.

For example, if B is 8192 bytes, L is 50 bytes and there is a five year archive of updates at a
frequency, U of 1 update per second, then 1.4 x 10**6 index blocks will be required resulting in a
four level R-tree. F of these blocks will reside on magnetic disk and the remainder will be on the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

P1 allocate to the region which has to be expanded the least
P2 allocate to the region whose maimum time has to be expanded the least

Record Insertion Strategies
Table 3
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F number of magnetic disk blocks usable for the index
U update frequency of the relation being indexed
L record size in the index being constructed
B block size of magnetic disk pages

Parameters Controlling Page Movement
Table 4

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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archive. Any insertion or search will require at least 4 accesses to one or the other storage
medium.

A third movement policy with somewhat different performance characteristics would be to
perform ‘‘batch movement’’. In this case one would build a magnetic disk R-tree until its size
was F blocks. Then, one would copy the all pages of the R-tree except the root to the archive and
allocate a special ‘‘top node’’ on magnetic disk for this root node. Then, one would proceed to
fill up a second complete R-tree of F-1 pages. While the second R-tree was being built, both this
new R-tree and the one on the archive would be searched during any retrieval request. All inserts
would, of course, be directed to the magnetic disk R-tree. When this second R-tree was full, it
would be copied to the archive as before and its root node added to the existing top node. The
combination might cause the top node to overflow, and a conventional R-tree split would be
accomplished. Consequently, the top node would become a conventional R-tree of three nodes.
The filling process would start again on a 3rd R-tree of F-3 nodes. When this was full, it would
be archived and its root added to the lower left hand page of the 3 node R-tree.

Over time, there would continue to be two R-trees. The first would be completely on mag-
netic disk and periodically archived. As long as the height of this R-tree at the time it is archived
is a constant, H, then the second R-tree of height, H1, will have the bottom H-1 levels on the
archive. Moreover, insertions into the magnetic disk portion of this R-tree are always on the left-
most page. Hence, the pages along the left-side of the tree are the only ones which will be
modified; other pages can be archived if they point entirely to pages on the archive. Hence, some
subcollection of the pages on the top H1-H+1 levels remain on the magnetic disk. Insertions go
always to the first R-tree while searches go to both R-trees. Of course, there are no deletions to
be concerned with.

Again if B is 8192 bytes, L is 50 bytes and F is 6000 blocks, then H will be 3 and each
insert will require 3 magnetic disk accesses. Moreover, at 1 update per second, a five year
archive will require a four level R-tree whose bottom two levels will be on the archive and a sub-
collection of the top 2 levels of 100-161 blocks will be on magnetic disk. Hence, searches will
require descending two R-trees with a total depth of 7 levels and will be about 40 percent slower
than either of the single R-tree structures proposed. On the other hand, the very common opera-
tion of insertions will be approximately 25 percent faster.

5. PERFORMANCE COMPARISON

5.1. Assumptions
In order to compare our storage system with a conventional one based on write-ahead log-

ging (WAL), we make the following assumptions.

1) Portions of the buffer pool may reside in non-volatile main memory

2) CPU instructions are not a critical resource, and thereby only I/O operations are counted.

The second assumption requires some explanation. Current CPU technology is driving down the
cost of a MIP at a rate of a factor of two every couple of years. Hence, current low-end worksta-
tions have a few MIPs of processing power. On the other hand, disk technology is getting denser
and cheaper. However, disks are not getting faster at a significant rate. Hence, one can still only
expect to read about 30 blocks per second off of a standard disk drive. Current implementations
of data base systems require several thousand instructions to fetch a page from the disk followed
by 1000-3000 instructions per data record examined on that page. As a simple figure of merit,
assume 30000 instructions are required to process a disk block. Hence, a 1 MIP CPU will
approximately balance a single disk. Currently, workstations with 3-5 MIPs are available but are
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unlikely to be configured with 3-5 disks. Moreover, future workstations (such as SPUR and
FIREFLY) will have 10-30 MIPs. Clearly, they will not have 10-30 disks unless disk systems
shift to large numbers of SCSI oriented single platter disks and away from current SMD disks.

Put differently, a SUN 3/280 costs about $5000 per MIP, while an SMD disk and controller
costs about $12,000. Hence, the CPU cost to support a disk is much smaller than the cost of the
disk, and the major cost of data base hardware can be expected to be in the disk system. As such,
if an installation is found to be CPU bound, then additional CPU resources can be cheaply added
until the system becomes balanced.

We analyze three possible situations:

large-SM: an ample amount of stable main memory is available
small-SM: a modest amount of stable main memory is available
no-SM: no stable main memory is availble

In the first case we assume that enough stable main memory is available for POSTGRES and a
WAL system to use so that neither system is required to force disk pages to secondary storage at
the time that they are updated. Hence, each system will execute a certain number of I/O opera-
tions that can be buffered in stable memory and written out to disk at some convenient time. We
count the number of such non-forced I/O operations that each system will execute, assuming all
writes cost the same amount. For both systems we assume that records do not cross page boun-
daries, so each update results in a single page write. Moreover, we assume that each POSTGRES
delta record can be put on the same page as its anchor point. Next, we assume that transactions
are a single record insertion, update, deletion or an aborted update. Moreover, we assume there
are two secondary indexes on the relation affected and that updates fail to alter either key field.
Lastly, we assume that a write ahead log will require 3 log records (begin transaction, the data
modification, and end transaction), with a total length of 400 bytes. Moreover, secondary index
operations are not logged and thereby the log records for 10 transactions will fit on a conventional
4K log page.

In the second situation we assume that a modest amount of stable main memory is avail-
able. We assume that the quantity is sufficient to hold only the tail of the POSTGRES log and
the tail of the TIME relation. In a WAL system, we assume that stable memory can buffer a con-
ventional log turning each log write into one that need not be synchronously forced out to disk.
This situation (small-SM) should be contrasted with the third case where no stable memory at all
is available (no-SM). In this latter cases, some writes must be forced to disk by both types of
storage systems.

In the results to follow we ignore the cost that either kind of system would incur to mirror
the data for high availability. Moreover, we are also ignoring the WAL cost associated with
checkpoints. In addition, we assume that a WAL system never requires a disk read to access the
appropriate un-do log record. We are also ignoring the cost of vacuuming the disk in the
POSTGRES architecture.

5.2. Performance Results
Table 5 indicates the number of I/O operations each of the four types of transactions must

execute for the assumed large-SM configuration. Since there is ample stable main memory, nei-
ther system must force any data pages to disk and only non-forced I/Os must be done. An insert
requires that a data record and two index records be written by either system. Moreover, 1/10th of
a log page will be filled by the conventional system, so every 10 transactions there will be
another log page which must be eventually written to disk. In POSTGRES the insertions to the
LOG relation and the TIME relation generate an I/O every 65536 and 2048 transactions respec-
tively, and we have ignored this small number in Table 5. Consequently, one requires 3 non-
forced I/Os in POSTGRES and 3.1 in a conventional system. The next two columns in Table 1
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can be similarly computed. The last column summarizes the I/Os for an aborted transaction. In
POSTGRES the updated page need not be rewritten to disk. Hence, no I/Os are strictly neces-
sary; however, in all liklihood, this optimization will not be implemented. A WAL system will
update the data and construct a log record. Then the log record must be read and the data page
returned to its original value. Again, a very clever system could avoid writing the page out to
disk, since it is identical to the disk copy. Hence, for both systems we indicate both the optim-
ized number of writes and the non-optimized number. Notice in Table 5 that POSTGRES is mar-
ginally better than a WAL system except for deletes where it is dramatically better because it
does not delete the 2 index records. We now turn to cases where POSTGRES is less attractive.

Table 6 repeats the I/O counts for the small-SM configuration. The WAL configuration per-
forms exactly as in Table 5 while the the POSTGRES data pages must now be forced to disk
since insufficient stable main memory is assumed to hold them. Notice that POSTGRES is still
better in the total number of I/O operations; however the requirement to do them synchronously
will be a major disadvantage.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Insert Update Delete Abort

WAL-force 0 0 0 0
WAL-no-force 3.1 1.1 3.1 0.1 or 1.1

POSTGRES-force 0 0 0 0
POSTGRES-non-force 3 1 1 0 or 1

I/O Counts for the Primitive Operations
large-SM Configuration

Table 5
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Insert Update Delete Abort

WAL-force 0 0 0 0
WAL-no-force 3.1 1.1 3.1 0.1 or 1.1

POSTGRES-force 3 1 1 0 or 1
POSTGRES-non-force 0 0 0 0

I/O Counts for the Primitive Operations
small-SM Configuration

Table 6
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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Table 7 then indicates the I/O counts under the condition that NO stable main memory is
available. Here the log record for a conventional WAL system must be forced to disk at commit
time. The other writes can remain in the buffer pool and be written at a later time. In
POSTGRES the LOG bit must be forced out to disk along with the insert to the TIME relation.
Moreover, the data pages must be forced as in Table 6. In this case POSTGRES is marginally
poorer in the total number of operations; and again the synchronous nature of these updates will
be a significant disadvantage.

In summary, the POSTGRES solution is preferred in the large-SM configuration since all
operations require less I/Os. In Table 6 the total number of I/Os is less for POSTGRES; however,
synchronous I/O is required. Table 7 shows a situation where POSTGRES is typically more
expensive. However, group commits [DEWI84] could be used to effectively convert the results
for either type of system into the ones in Table 6. Consequently, POSTGRES should be thought
of as fairly competitive with current storage architectures. Moreover, it has a considerable advan-
tage over WAL systems in that recovery time will be instantaneous while requiring a substantial
amount of time in a WAL architecture.

6. CONCLUSIONS
This paper has described the storage manager that is being constructed for POSTGRES.

The main points guiding the design of the system were:

1) instantaneous recovery from crashes

2) ability to keep archival records on an archival medium

3) housekeeping chores should be done asynchronously

4) concurrency control based on conventional locking

The first point should be contrasted with the standard write-ahead log (WAL) storage managers in
widespread use today.
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Insert Update Delete Abort

WAL-force 1 1 1 1
WAL-no-force 3 1 3 0 or 1

POSTGRES-force 5 3 3 1
POSTGRES-non-force 0 0 0 0 or 1

I/O Counts for the Primitive Operations
no-SM Configuration

Table 7
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In engineering application one often requires the past history of the data base. Moreover,
even in business applications this feature is sometimes needed, and the now famous TP1 bench-
mark assumes that the application will maintain an archive. It makes more sense for the data
manager to do this task internally for applications that require the service.

The third design point has been motivated by the desire to run multiple concurrent
processes if there happen to be extra processors. Hence storage management functions can occur
in parallel on multiple processors. Alternatively, some functions can be saved for idle time on a
single processor. Lastly, it allows POSTGRES code to be a collection of asynchronous processes
and not a single large monolithic body of code.

The final design point reflects our intuitive belief, confirmed by simulations, that standard
locking is the most desirable concurrency control strategy. Moreover, it should be noted that
read-only transactions can be optionally coded to run as of some point in the recent past. Since
historical commands set no locks, then read-only transactions will never interfere with transac-
tions performing updates or be required to wait. Consequently, the level of contention in a
POSTGRES data base may be a great deal lower than that found in conventional storage
managers.

The design of the POSTGRES storage manager has been sketched and a brief analysis of its
expected performance relative to a conventional one has been performed. If the analysis is
confirmed in practice, then POSTGRES will give similar performance compared to other storage
managers while providing the extra service of historical access to the data base. This should
prove attractive in some environments.

At the moment, the magnetic disk storage manager is operational, and work is proceeding
on the vacuum cleaner and the layout of the archive. POSTGRES is designed to support extendi-
ble access methods, and we have implemented the B-tree code and will provide R-trees in the
near future. Additional access methods can be constructed by other parties to suit their special
needs. When the remaining pieces of the storage manager are complete, we plan a performance
‘‘bakeoff’’ both against conventional storage managers as well as against other storage managers
(such as [CARE86, COPE84]) with interesting properties.
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